SHELL ELEMENTS OF ARCHITECTURAL CONCRETE USING FABRIC FORMWORK

PART 1: CONCEPT

Cauberg N. Parmentier B.

M. Vanneste

Mollaert M.

Introduction: Partnership

Construction sector

•Non-profit, private research institute

- Statutory members, + 70.000 Belgian contractors
- Collective research, Development & Innovation
- Information transfer

Textile industry

- Non-profit, private research institute
- Members: 900 textile producers, 100 associated me
- Collective research, Development & Innovation
- Information Transfer

Architecture

- 9000 students, 2500 staff members, 8 faculties
- ARCH: Department of Architectural engineering
- 25 members, head prof. Mollaert, focussing on:
 - Renovation and re-use

Vrije Universiteit Brussel

- Lightweight structures -> Tensile surface structures
- 4D Design

Introduction

aterials

Experiments

Introduction:Concept

Introduction: Why fabric formwork?

Concrete, poured in a formwork \approx fluid

- Shape flexibility: Creative or organic shapes, intelligent design structural members
- Surface quality of the concrete
- Transport
- But: More complex!

Practical Solutions

Slope/dike reinforcement,
Under water concreting,
Foundations, ...

Introduction: Reference work

Design and Architecture

Mark West:

Beams, panels, columns, ...Pedreschi, Pronk, Schmitz, ...

Modeling

Materials

Experiments

Conclusions and outlook

Modeling and shaping

Approach similar to « textile architecture »

- Shaping
- Material choice and prestress condition
- Loading conditions (concrete)
- Calculation of stresses and deformations
- Iteration...

Manufacturing

- Cutting pattern
- Confection step
- Actual formwork set-up
- « Prefabricated »

Introduction

Modeling and shaping

Materials

Experiments

Conclusions and outlook

Materials

- PP, PE and PVC
- Tensile strength: 40-150 kN/m
- Young modulus: 0.1 1 GPa
 - -> deformations
- Stiffness: 100 600 kN/m
- Coated and non-coated
 - -> demoulding, impermeability
- Texture
 - -> surface aspect

Experiments

• Assembly: stitching, welding, ...

Modeling

Introduction

Materials

Conclusions and outlook

Experiments:Case studies Columns, shells, wall panels, ...

Columns with specific heads (axial symmetry, square, ...) combined with slab formwork

Materials

Experiments

Conclusions and outlook

Belgian Building Research Institute

Experiments:Case studies Columns, shells, wall panels, ...

 Arch and column combined • Specific shape adapted for fabric formwork \$100 « PARKgarage » idea of Pronk (TU/e) FRPRCS-9, Sydney, July 2009 **Experiments** Conclusions and outlook Introduction Modelina Materials

Belgian Building Research Institute

Experiments:Case studies Columns, shells, wall panels, ...

Brodzki

Mould for precast element

Materials

Experiments

Conclusions and outlook

• Complex geometry for traditional formwork

- Textile choice, confection
- Prestress ± 2 kN/m
- Sprayed concrete
- Small deformations < 2 mm
- Reinforcement: important issue

Design The Nomad Concept

Introduction

Modeling

Materials

Experiments

Conclusions and outlook

Introduction

Materials

Experiments

Conclusions and outlook

- Complex geometry for traditional formwork
- Textile choice, confection
- Prestress ± 2 kN/m
- Sprayed concrete
- Small deformations < 2 mm
- Reinforcement: important issue

Design The Nomad Concept

Introduction

Materials

Experiments

Conclusions and outlook

Conclusions and further work

New possibilities for architectural concrete

- Preliminary study, modeling and manufacturing
- Preparation depends on element type
- On-site construction or precast production

New Central Station Stuttgart

Further steps

- Optimize formwork manufacturing
- Reinforcement: traditional and polymer reinforcement

-> Part 2: Case study!

Introd	uction	i

Experiments

Conclusions and outlook

Conclusions and further work

Further steps and research

- Shell element for permanent formwork (type « wide slab »)
- Integration of steel reinforcement
- Integration of polymer fiber reinforcement
- Use of fabric formwork as actual reinforcement

duction	11
	11

Intro

Experiments

Conclusions and outlook

Thank you for your attention!

Partnership:

BBRI <u>Niki.Cauberg@bbri.be</u>

Centexbel Pieter.Heyse@Centexbel.be

Vrije Universiteit Brussel **Financial support:**

