Appendix D: Summary of Calculations and General Assumptions in Colum Design

Load eccentricity $=0$
$f_{o}^{\prime}=25 \mathrm{MPa}$
$f_{y}=400 \mathrm{MPa}$

Diameter of the cross sectional area $=254 \mathrm{~mm}=10$ inches

Therefore, concrete cross sectional area equals:

$$
A_{g}=\frac{\pi d^{2}}{4}=\frac{\pi 254^{2}}{4}=50670.75 \mathrm{~mm}^{2}
$$

Controlling Slenderness (CSA A23.3 Cl. 10.14.2):
Radius of Gyration of circular columns $(r)=0.25 D=0.25(254)=63.5 \mathrm{~mm}$

Considering a pin-pin support, $k=1$ and $l_{u}=1500 \mathrm{~mm}$,

Therefore, the slenderness ratio equals:

$$
\frac{k l_{u}}{r}=\frac{1 \times 1500}{63.5}=23.62 \mathrm{~mm}
$$

In order to be able to ignore the slenderness effect, following condition should be satisfied (CSA A23.2 Eq. 10.15):
$\frac{k l_{u}}{r} \leq \frac{25-10 \times\left(\frac{M_{1}}{M_{2}}\right)}{\sqrt{\frac{P_{f}}{f_{c}^{\prime} A_{g}}}}$

Considering design load of $P_{f}=600 \mathrm{kN}$;
If eccentricity equals zero; M_{1} and M_{2} (Moments at the ends of the columns) are both equal to zero:
$23.62 \leq \frac{25-10 \times\left(\frac{0}{0}\right)}{\sqrt{\frac{600 \times 1000}{25 \times 50670.75}}}=36.33$

Since the condition is satisfied, slenderness effect could be ignored.

Reinforcement Design

According to the CSA code (A23.3 Cl. 10.9.1 and 10.9.2), column reinforcement ratio $\left(\rho_{t}\right)$ should be in the range from 1% to 8% of the cross sectional area. But since there is no lap splice region in the columns, the range will be limited between 1% to 4% (Brzev
and Pao 2006) Also, according to A23.3 Cl. 10.9.3, minimum number of longitudinal bars for columns with circular ties shall be four. Assuming use of $4 \varnothing 15$ longitudinal bars:

Area of Reinforcement $=A_{s t}=4 \times 200=800 \mathrm{~mm}^{2}$

Reinforcement ratio (A233 Cl.10.9) can be calculated as:
$\rho_{t}=\frac{A_{s t}}{A_{g}}=\frac{800 \mathrm{~mm}^{2}}{50670.75 \mathrm{~mm}^{2}}=0.01579$

Knowing that the reinforcement ratio is within the range:
$0.01 \leq 0.01579 \leq 0.04$

Therefore, $4 \oslash 15$ steel bars could be selected as longitudinal bars.

Maximum Axial Load

Ratio of average stress in rectangular compression block to specified block $\left(\alpha_{1}\right)$ equals (A23.3 Eq. 10.1):
$\alpha_{1}=0.85-0.0015 f^{\prime}{ }_{0} \geq 0.67$

Therefore:

$$
\alpha_{1}=0.85-0.0015 \times 25=0.8125 \geq 0.67
$$

Based on CSA A23 Eq. 10.10:

$$
P_{r o}=\alpha_{1} \varphi_{C} f_{o}^{\prime}\left(A_{g}-A_{s t}\right)+\varphi_{s} f_{y} A_{s t}
$$

Omitting the resistance factors of steel and concrete we can rewrite the equation as:

$$
P_{r o}=\alpha_{1} f_{o}^{\prime}\left(A_{g}-A_{s t}\right)+f_{y} A_{s t}
$$

Therefore, maximum factored axial load resistance of the reinforced column can be predicted as:

$$
\begin{aligned}
& P_{r o}=\alpha_{1} f_{o}^{\prime}\left(A_{g}-A_{s t}\right)+f_{y} A_{s t}=0.8125 \times 25(50670.75-800)+400 \times 800 \\
& P_{r o}=1332999.61 \mathrm{~N}=1333 \mathrm{KN}
\end{aligned}
$$

Considering maximum capacity of the testing machine as 2670 kN , the calculated value of 1333 kN as the maximum predicted axial load capacity of the columns is within the safe margin (about 50% of the maximum load capacity of the testing machine).

